KING AND TANNER CRAB RESEARCH IN ALASKA:

SEMIANNUAL REPORT FOR

OCTOBER 1, 1996 THROUGH MARCH 31, 1997

Submitted Under Cooperative Agreement NA67FM0212 To

National Oceanic and Atmospheric Administration National Marine Fisheries Service P.O. Box 21668 Juneau, Alaska 99802

Edited By

Gordon H. Kruse ADF&G Project Coordinator

Regional Information Report No. 5J97-07
Alaska Department of Fish & Game
Commercial Fisheries Management and Development Division
P.O. Box 25526
Juneau, Alaska 99802-5526

April 9, 1997

KING AND TANNER CRAB RESEARCH IN ALASKA:

SEMIANNUAL REPORT FOR

OCTOBER 1, 1996 THROUGH MARCH 31, 1997

Submitted Under Cooperative Agreement NA67FM0212 To

National Oceanic and Atmospheric Administration National Marine Fisheries Service P.O. Box 21668 Juneau, Alaska 99802

Edited By

Gordon H. Kruse ADF&G Project Coordinator

Regional Information Report No. 5J97-07
Alaska Department of Fish & Game
Commercial Fisheries Management and Development Division
P.O. Box 25526
Juneau. Alaska 99802-5526

April 9, 1997

The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Commercial Fisheries Management and Development Division.

OVERVIEW OF KING AND TANNER CRAB RESEARCH

Dr. Gordon H. Kruse, ADF&G Project Coordinator

Alaska Department of Fish & Game, Commercial Fisheries Management and Development Division P.O. Box 25526, Juneau, Alaska 99802-5526

Introduction

A budget initiative for crab research was funded by the U.S. Congress in 1992 to address pivotal biological and fishery research questions associated with the determination of optimal management strategies for the king (*Paralithodes*, *Lithodes*), Tanner (*Chionoecetes bairdi*) and snow crab (*C. opilio*) fisheries off Alaska. This initiative, funded through the National Marine Fisheries Service (NMFS), was developed by staffs of the Alaska Department of Fish and Game (ADF&G) and NMFS. It reflects their shared responsibilities for crab research and fishery management. The funds support cooperative investigations conducted by researchers with state and federal agencies and universities. Under Cooperative Agreement NA67FM0212, ADF&G was awarded \$237,500 for the fourth year of work during state fiscal year FY 97 which spans July 1, 1996 through June 30, 1997. First quarter progress was reported previously (Kruse 1996b). This document summarizes semiannual progress during October 1, 1996 through March 31, 1997.

Long-term Research Strategy

Background, justification, and a long-term strategy for crab research were provided in the original statement of work (Kruse 1993) and long-term work plans (Kruse 1994, 1996a). In overview, many crab stocks that previously supported large commercial fisheries have declined to very low abundance resulting in closed fisheries. These major changes underscore the importance of understanding the interaction of fisheries and natural fluctuations in the environment. The long-term strategy for crab research is to answer fundamental questions associated with these interactions by investigations of crab stock structure, population estimation, biological productivity, and harvest strategies.

Overall Project Plan For Fourth Year

This fourth year of research continues progress on the long-term work plan by conducting four studies: (1) recruitment dynamics of Tanner crabs; (2) crab handling mortality and bycatch reduction; (3) genetic stock identification; and (4) crab management strategies. With respect to the long-term research plan (Kruse 1996a), project 1 is directed toward the question "what features drive their productivity?" Projects 2 and 4 provide insights into "how should this productivity be harvested?" Project 3 attempts to answer the general question "what are the stocks?" Project descriptions and semiannual progress follow.

A fifth project, on breeding success of legal-size male red king crabs (*Paralithodes camtschaticus*), was funded in FY 96 but was not completed due to difficulties collecting experimental animals. ADF&G sought and NMFS approved extension of FY 96 funds to allow completion of this project in FY 97. A semiannual report of progress on this fifth study is reported separately under Cooperative Agreement NA37FI0333 (Kruse 1997).

PROJECT 1: RECRUITMENT DYNAMICS OF TANNER CRABS

Dr. Albert V. Tyler, Principal Investigator

School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska 99775-7220

Background and Need

The Japanese tangle net fishery for Tanner crabs in the eastern Bering Sea began in the 1960s. Minor landings were taken incidental to the U.S. domestic pot fishery for king crabs during 1968 to 1974. Since then, Tanner crabs have been the focus of a valuable but volatile fishery. Periods of large harvests have been followed by population declines leading to low harvests and limited fishing seasons.

The eastern Bering Sea stock of Tanner crabs is currently in a depressed condition which has been attributed to senescence of strong year classes in 1983 and 1984. Presumably, occasional periods of high productivity are the source of the biomass which drives the fishery. Factors contributing to this production are unknown.

Project Description

This project is being conducted through a Reimbursable Services Agreement (RSA) between the University of Alaska Fairbanks (UAF) and ADF&G. RSAs are administrative agreements between ADF&G and other state agencies for the performance of a service that involves the receipt or expenditure of funds. The RSA funds research-related expenses for Dr. Albert V. Tyler and a graduate student (Gregg Rosenkranz) who is working on a masters degree in fisheries under the direction of Dr. Tyler of UAF. Mr. Rosenkranz is a Rasmuson Fisheries Fellow and brings his tuition and stipend to the project. The project is conceived as a two-year study.

The overall research goal is to understand the causes of bursts of increased, fishery-sustaining production. The primary objective is to develop a statistical model to study the relationships between physical and biological factors affecting population levels of Tanner crabs in the eastern Bering Sea. Step-by-step evaluation of possible effects of oceanographic variables on each stage in the species' life history will lead to formation of hypotheses that can be expressed as mathematical functions and will serve as the basis for a conceptual model. Existing time series of sea water temperature, prevailing

winds, ice cover, and barometric pressure, as well as information from stock assessment work by NMFS and ADF&G will provide inputs to a computer model which implements the hypothesized relationships to calculate theoretical Tanner crab year-class strength. Statistical comparison of these results with population estimates from ADF&G will provide an indication of the relative importance of explanatory variables and validity of hypotheses.

Although this is a new project, preliminary research was completed by Dr. Tyler. His work suggests that there are significant statistical relationships between physical variables and Tanner crab population levels. In particular, there appears to be a correlation between May-June wind from the northeast and brood strength. Northeast winds flow parallel to the coast along the Bristol Bay side of the Alaska Peninsula. Physical oceanographic theory predicts that this wind would cause Ekman transport in the form of upwelling. It is well known that moderate upwelling enhances the concentration of nutrients that bring about increased phytoplankton production and later a general increase in organism productivity. There are likely other ocean factors as well that would change productivity and survival of Tanner crabs. A multivariate modeling approach will provide the means to further investigate these relationships.

Goals for FY 97

The following list outlines project milestones for FY 97 and approximate time allotment for each:

- (1) July 1-September 1: Review of literature on Tanner crab life history, physical oceanographic variables, and modeling approaches.
- (2) August 1-September 15: Statistical evaluation of oceanographic time series and ADF&G estimates of Tanner crab population levels.
- (3) August 15-November 1: Formulation of hypotheses on the effects of physical variables on each stage of Tanner crab life history.
- (4) September 15-December 1: Development of conceptual model that integrates hypotheses and leads to logical flow.
- (5) December 1-June 30: Implement and test a computer model derived from the conceptual model. Testing will include step-wise multivariate linear modeling and multivariate second-order curvilinear modeling.

Progress During 1st Quarter

Relevant literature has been reviewed, and hypotheses have been formulated. Data series are being compiled to investigate each hypothesis in a statistical model. These hypotheses are expressed here in order of their life history occurrence.

Hypothesis 1. Year-class strength of Tanner crabs is limited by food availability during the period from hatching to settlement (pelagic phase). At least two forces, wind-driven turbulent mixing and Ekman upwelling, transport nutrients into the euphotic zone, increasing primary production. Favorable sea surface temperatures combined with heightened primary production increase the abundance of copepod nauplii, the primary prey of Tanner crab zoeae.

<u>Hypothesis 2.</u> Advection during the pelagic phase takes Tanner crab to unfavorable habitat in inner Bristol Bay in some years. Unfavorable transport could result from net northeasterly flow along the north shore of the Alaska Peninsula that is in part determined by the intensity of the Alaska Coastal Current.

<u>Hypothesis 3.</u> Large numbers of out-migrating Bristol Bay sockeye salmon prey on larval Tanner crabs. Abundance of Bristol Bay sockeye smolts varies interannually. Smolt estimates are being sought from university and state sources.

Hypothesis 4. Tanner crab survival rate is reduced by settlement into bottom waters colder than 2° C. Extent of the annual mid-shelf cold pool is a function of ice cover and intensity of the previous winter.

<u>Hypothesis 5.</u> Predation on benthic juveniles by cod and sole decreases numbers of age 0 to age 2 Tanner crabs. Fluctuations in biomass of these groundfish species are estimated by the NMFS trawl survey.

<u>Hypothesis 6.</u> Anthropogenic disturbances of the Tanner crab breeding population reduce total fecundity and lower year-class strength. Bottom trawling and pot-fishing effort vary both by year and by area, and data are available.

Progress During 2nd and 3rd Quarters

The conceptual framework for this study of the Bering Sea Tanner crab population was developed using the time-events method described by Tyler (1992). A review of basic research provided information about Tanner crab life history and the timing of the reproductive cycle. Plankton sampling from the PROBES investigation (Incze 1983) and NMFS trawl surveys (e.g., Stevens et al. 1996) helped identify probable geographical locations of the population during larval, pre-recruit, and adult stages. A review of literature on the physical and biological oceanography of the Bering Sea shelf supplied a description of the environment and aided the understanding of mechanisms that

could affect Tanner crab productivity and survival during various life-history stages. Life history and oceanographic information was integrated in the construction of a series of hypotheses about factors affecting Tanner crab year-class strength.

Length-based modeling by ADF&G (Zheng et al. in press) produced a time series of year-class strength estimates which reflects Tanner crab reproduction and survival to maturity. Hypotheses about factors affecting Tanner crab recruitment are tested by applying correlation and regression methods to time series of candidate variables and year-class strength estimates. If there is a significant relationship between an explanatory variable and the Tanner crab time series in the univariate setting, the variable will be considered for inclusion in a multivariate model. Of particular interest is the identification of environmental conditions which lead to periods of above-average reproduction and provide biomass which supports the Tanner crab fishery. The final model will include the two or three variables which best explain the variation in the Tanner crab year-class strength estimates. Note that the statistical techniques in use cannot prove causation; rather, this work will identify factors which seem important and warrant further investigation while eliminating others. In some cases, time series of explanatory variables hypothesized to be important have not been collected or do not exist for all years (1968-1986) of the Tanner crab time series. The possibility of estimating these variables from related data will be investigated as work progresses.

The fitting of a theoretical stock-recruit model to the Bering Sea Tanner crab population does not seem practical at present because the respective time series of spawning biomass and recruitment overlap for only 13 years. However, possible relationships between spawning stock abundance and recruitment were investigated qualitatively by stratification and reexamination of the NMFS trawl survey data. This analysis was also undertaken to become familiar with data which provide input for the length-based model and hence the year-class strength estimates. Records of Tanner crab catches from the survey were stratified according to Bering Sea oceanographic regions. Three areas selected for study were the outer shelf, mid-shelf, and a coastal region comprised of a strip adjacent to the Alaska Peninsula from Unimak Pass to Port Heiden. Separate series of length-frequency and catch per trawl plots for males and females in each region were constructed and examined.

Analysis of the stratified NMFS data and comparison to the year class estimates revealed key features of Bering Sea Tanner crab population dynamics over the past 20 years. Relatively large populations which produced poor year classes were found in all regions from 1975 to 1979. Strong year classes were produced by a moderate spawning stock in the early 1980s. This was followed by a drastic drop in abundance between 1984 and 1985 which was most noticeable in the outer shelf region, where female CPUE fell from about 50 to 5 crabs per tow. The population then rebounded, peaking again in 1990, but has since declined and is presently at very low levels. Incze (1983) found high densities of newly hatched Tanner crab larvae in the outer shelf area during plankton sampling, and the stratified CPUE provides evidence that female

abundance in this region is important for the production of new recruits. The sharp drop in Tanner numbers there in 1985 marked the end of a period which produced above average year classes. Yet, moderately high abundance levels in this area from 1975 to 1979 failed to produce good recruitment, suggesting that environmental variables play a crucial role.

Collection and statistical analysis of the many time series suggested by our hypotheses is in the initial stages. The relationship between wind direction and recruitment which was uncovered in preliminary work on the project has been investigated in more detail. Expressing average May-June winds measured at St. Paul Island in vector-component form made it possible to perform a series of linear regressions with wind intensity from a given direction as the explanatory variable and estimated recruitment as the response. A separate regression was performed for each 15 degree increment from 5° to 170°, effectively covering all points of the compass (note 5° is equivalent to 185° with a change of sign). Hypothesis testing to determine which of these regressions are significant shows there is a relationship between wind intensity and Tanner crab recruitment when winds are from 5° to 80° and no relationship for winds from 95° to 170°. The strongest relationship occurs when the time series of wind intensity is taken from 65°, which produces a regression correlation coefficient r²=0.34 and shows good overall agreement with the trend of the estimated year class times series. Noting that May-June coincides with the pelagic phase of newly hatched Tanner crab, this finding provides evidence for both the first and second hypotheses. Ekman transport is caused by alongshore winds moving south in the Northern Hemisphere and promotes upwelling of nutrient-rich bottom water leading to increases in phytoplankton abundance. Winds from 5° to 80° are long-shore relative to the Alaska Peninsula and hence this finding suggests that Tanner crabs may benefit from increased primary production associated with upwelling. However, the relationship between northeast winds and good Tanner crab year classes may also be explained by the second hypothesis. Northeast winds affect the net movement of Bering Sea surface water and may prevent zoeae from being advected to the inner reaches of Bristol Bay, where habitat is known to be more suitable for king crab. Additional work will be necessary to determine if one or both of these mechanisms is at work.

Preliminary analyses have also been performed on time series of predator abundance and Bering Sea bottom water temperature. Estimates of Pacific cod relative abundance in the study region from NMFS trawl surveys appear to be uncorrelated with Tanner crab recruitment, although cod estimates are not available for all years of the Tanner crab time series and measurement error due to changes in survey techniques may be a factor as well (Gary Walters, NMFS Seattle, personal communication). Similarly, work with time series on abundance of out-migrating and returning Bristol Bay sockeye salmon obtained from ADF&G has shown no relationship to Tanner crab recruitment. Regression of the Tanner crab time series against June bottom temperatures measured over the Southeastern Bering Sea shelf by the Japanese research vessel Oshoro Maru (Ohtani and Azumaya 1995) reveals a significant relationship when

recruitment is expressed by year of fertilization rather than year of hatching. This indicates that the intensity or extent of the cold pool affects Tanner crab reproduction, possibly by delaying brood development. Laboratory studies on the effects of temperature on Tanner crab reproduction are lacking, but conceivably, persistent cold waters may inhibit development of the oocyte and embryo clutch and disrupt timing of the reproductive cycle. Analyses of related time series (such as sea ice cover and sea surface temperature) should help clarify the relationship between water temperatures at various life-history stages and year-class strength formation.

Plans for Remainder of Year

- (1) Evaluation of missing data. Not all variables hypothesized to influence Tanner crab recruitment have been measured in all years of the response variable time series. The possibility of estimating these factors from related data will be investigated.
- (2) Collection and analysis of additional biotic and abiotic time series suggested by the hypotheses on Tanner crab year class strength, especially advection, sea ice cover, and bottom temperature.
- (3) Formation and analysis of the multi-variate regression model, combining the variables which best explain variation in the time series of year-class strength estimates

Benefits of Project

This project will provide insights about the causative factors of strong year classes of Tanner crabs. Because recruitment to the fishery occurs 7 years after hatching, knowledge about key factors that operate during early life history will yield vital information to fishery management. During long periods of poor recruitment, harvest rates should be lowered so that spawning stocks are not reduced to levels so low that the stock cannot recover. During periods of strong recruitment, increased harvests may be taken. Results from this project will be directly incorporated into analyses of alternative harvest strategies by Project 4, *Crab Management Strategies*. Besides benefiting managers of the Tanner crab fishery, the modeling approach may provide insight into the population dynamics of other species in the ecosystem.

PROJECT 2: CRAB HANDLING MORTALITY AND BYCATCH REDUCTION

Dr. Shijie Zhou, Principal Investigator

Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, P.O. Box 25526, Juneau, AK 99802-5526

Background and Need

Pots capture male and female crabs of a range of sizes and carapace conditions. Yet, all Alaskan crab fisheries are regulated by size and sex restrictions. As a result, females and small males are discarded. Concern exists regarding handling mortality of crabs returned to the sea. A previously-funded project under this NOAA Cooperative Agreement found that repeated handling of red king crabs caused increased injury rate but had no effect on feeding, growth, righting response or mortality (Zhou and Shirley 1995). On the other hand, exposure to extremely cold temperatures can have severe adverse effects (Carls and O'Clair 1990, 1995). Conceivably, handled crabs might experience increased mortality from other factors such as habitat displacement or predation (Murphy and Kruse 1995), but such potential effects have not yet been studied in Alaska.

Another approach to the handling problem is to minimize bycatch of female and sublegal male crabs through gear modifications. In FY 96, ADF&G funded a study of red king crab behavior near crab pots. An outcome of this research was a new experimental pot design that significantly reduced bycatch while maintaining catches of legal crabs. Although this new gear is quite promising from laboratory studies, it must be tested in field trials before recommendations can be made about potential gear changes by the fleet.

Project Description

This project funds a non-permanent fishery biologist II for 11 months. The project approaches the handling problem in two ways. The first approach is to attempt to estimate handling mortality during historical commercial crab fisheries. The second approach is to attempt to minimize the capture of nonlegal king crabs by the current commercial fishery with gear modifications. Several studies involve these two approaches.

Of all the factors studied so far, exposure to cold air seems to be the most consequential to handled crabs returned to the sea. Therefore, the first study will simulate handling mortality rates of Bristol Bay red king crabs and eastern Bering Sea Tanner crabs due to cold air exposure. Input data are historical records of daily commercial catches, catch rates, and Pribilof Island air temperature and wind speed to calculate exposures to real and apparent temperatures from wind chill. Functional relationships are mortality from cold air exposure as determined from laboratory studies (Carls and O'Clair 1990, 1995) and time of exposure as affected by number of crabs per pot from field observations (Zhou and Shirley 1996). For comparison, reconstructed mortality rates will be compared to historical records of deadloss

from these fisheries. Based on findings, recommendations will be made concerning the timing of current fishing seasons with respect to extreme winter weather.

In a second study, a new red king crab pot, designed in the laboratory, will be field tested under commercial fishing conditions in Bristol Bay. The fishery biologist will develop the experimental design, implement the field test, analyze the results, and prepare a manuscript for publication. Aside from the biologist's salary, other costs of this project (e.g., gear purchase, vessel charters) will be paid by ADF&G with state funding.

If needed, the fishery biologist may assist in the design and conduct a second gear study. The purpose of this study is to analyze rings and large-mesh panels as escape mechanisms to reduce bycatch and handling mortality of female and sublegal male Tanner crabs in Kodiak, Alaska. A report of findings will be prepared for publication.

If time is available, the biologist will reconstruct historical handling mortality rates for other red king and Tanner crab fisheries in Alaska for which appropriate temperature, wind, and catch data are available.

Goals for FY 97

Milestones of this project for FY 97 include:

- (1) Prepare a manuscript on laboratory study of red king crab behavior around crab pots for publication in a professional fisheries journal.
- (2) Design a field study of red king crab pot gear to reduce bycatch of females and sublegal males.
- (3) Oversee experimental red king crab pot construction.
- (4) Conduct the study, analyze the results, and prepare a manuscript on red king crab gear experiments in Bristol Bay for submission to a professional fisheries journal.
- (5) Analyze air temperature, wind speed, and commercial catch data for Bristol Bay red king crabs and eastern Bering Sea Tanner crabs to reconstruct historical handling mortality from cold air exposure, and prepare a manuscript for publication.
- (6) Help design, conduct, analyze, and report on results of a Tanner crab gear study conducted in Kodiak, Alaska.

Progress During 1st Quarter

The following progress was made during the first quarter:

- (1) Eleven experimental pots have been constructed. These pots were re-built from frames of standard king crab pots (210x210x87 cm) in Kodiak and shipped to Dutch Harbor before the field experiment.
- (2) The field study was designed and conducted in the Bristol Bay coincidentally with two other gear studies that were designed to evaluate the escape of red king and Tanner crabs from pots rigged with escape rings. The experiments continued for one month, and they included six 4x4 sampling grids comparing the catchability of experimental and standard king crab pots.
- (3) A manuscript on laboratory study of red king crab behavior around crab pots was revised in response to reviewer comments. This manuscript has been accepted for publication in the Journal of Fisheries Research. Another manuscript comparing experimental and standard pot designs has been completed and submitted to the Canadian Journal of Fisheries and Aquatic Sciences.

Progress During 2nd and 3nd Quarters

The project progressed as planned during the second and third quarters:

- (1) The data from the Bristol Bay pot study were analyzed, and a manuscript titled "Catchability and size composition of red king crabs caught in two types of pots in the Bering Sea" has been drafted for publication. A manuscript is currently undergoing internal ADF&G review.
- (2) An analysis of discarded crabs from commercial fisheries, air temperature, wind speed, commercial catch, and historical mortality for Bristol Bay red king crabs has been completed. A first draft of a manuscript has been completed, and it is being reviewed by the coauthor prior to revision for submission to internal ADF&G review.
- (3) A companion analysis of the eastern Bering Sea Tanner crab fishery has just been initiated. Data have been obtained from computer archives on the commercial fishery, mortality, and weather data.
- (4) Some ancillary data on red king crab feeding and growth rates, collected during a previously-funded project, have been analyzed and a manuscript has been completed. The manuscript is in internal review in advance of submission to the Journal of Crustacean Biology.

Plans for Remainder of Year

Plans include:

- (1) Pending internal reviewer comments, revise the three aforementioned manuscripts and submit them to professional fishery journals for publication.
- (2) Analyze eastern Bering Sea Tanner crab fishery and weather data to reconstruct historical mortality form fishing discards and cold air exposure, and prepare a manuscript for internal review.
- (3) Begin to design and prepare for laboratory studies on cod gear modification and wind chill effects on discarded crabs to be conducted next fiscal year under NOAA Cooperative Agreement.

Benefits of Project

This project relates to the long-term research plan in two ways. First, by analyzing historical exposure of red king and Tanner crabs to cold air exposure during the history of the fishery, this project will help further our understanding of one potential cause of crab stock declines. It will also help us evaluate the merits of current fishing seasons. Second, field experiments on experimental crab pot designs may ultimately help minimize the number of crabs that get handled and discarded during commercial fisheries.

PROJECT 3: CRAB GENETICS

Sue Merkouris and Dr. Lisa Seeb, Principal Investigators

Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Genetics Laboratory, 333 Raspberry Road, Anchorage, AK 99518-1599

Background and Need

Management of commercial fisheries relies on an understanding of the underlying stock structure. Although we have made some progress (e.g., Seeb et al. 1990a,b) into genetic stock identification of red king crabs, several key questions remain about the structure of the *Chionoecetes* species complex and as well as golden king crabs (*Lithodes aequispinus*).

We recently completed the analysis of allozyme data for stock discrimination among *Chionoecetes*, and results have been submitted for publication. These data indicate that differentiation exists among populations ranging from the Gulf of Alaska to the Bering Sea,

and heterogeneity exists in populations within the Bering Sea. However the number of allozyme marker loci within each species is limited.

During FY 95 and FY 96 a new line of research was begun to develop mitochondrial (mtDNA) and nuclear DNA markers for identification of Alaskan crab stocks. This work was done in collaboration with other laboratories. Nuclear markers have the potential of providing additional variability that can be used in stock discrimination. Further, mtDNA can be extremely useful in hybrid studies. When combined with allozyme data or other nuclear genetic data, the data sets can establish the direction of hybridization and the extent of introgression between *Chionoecetes* crab species.

Project Description

This project funds an ADF&G Fishery Biologist II for 6 MM and associated laboratory supplies to conduct studies into genetics of crab stocks. Specifically, the project will concentrate on the development and application of DNA-level markers and completion of allozyme work previously initiated. A mtDNA analysis of hybridization of *Chionoecetes* species will be conducted. Further, a small-scale pilot study of golden king crabs from Southeast Alaska, Adak Island, and the Dutch Harbor and Bering Sea areas will be performed to determine potential utility of allozymes for stock separation. These allozyme projects were proposed in FY 95 and FY 96, but inadequate samples were obtained for the analyses. A few blue king crab (*Paralithodes platypus*) samples will be examined for comparison. If nuclear DNA-level markers currently being developed in collaboration with other laboratories prove promising, a study will be initiated late in FY 97 to further examine population structure of red king crab stocks in Alaska.

Goals for FY 97

Fourth-year work continues to achieve long-term research goals for crab genetics:

- (1) Analyze mtDNA markers in *Chionoecetes opilio* and *C. bairdi* to determine the extent and direction of hybridization within the Bering Sea, and prepare a report for publication.
- (2) Complete a pilot study on golden king crab allozymes: collection of samples, screening of gels, and report preparation. Results of allozyme analyses of a few blue king crab specimens will be compared to red and golden king crabs.
- (3) Initiate a study late in FY 97 using DNA-level markers, primarily microsatellites, for stock discrimination among red king crab populations. These markers are currently being developed under contract to Jensen and Bentzen of the University of Washington (UW) and may also be useful in future analyses of *Lithodes* stock structure.

Progress During 1st Quarter

- (1) Allozyme analysis of remaining red king crab samples (N=250) is nearly completed. A few samples of golden and blue king crab were included for comparison to begin protocol development for these species.
- (2) Microsatellite development is continuing under contract with the UW Marine Molecular Biotechnology Laboratory. Primers have been developed and all 150 crabs representing three geographic populations (Bristol Bay, Uganik Passage, Deadman's Reach) have been run at least once for six microsatellite loci. Optimization of these six loci continues. Preliminary analysis of data from one locus indicates significant heterogeneity among the three populations examined. Further data analyses are in progress. Final results of population screenings of all six loci are expected within the next quarter.
- (3) A manuscript entitled "Genetic variation of highly exploited Tanner crabs, (*Chionoecetes bairdi*) and snow crabs (*C. opilio*) in Alaska" has been accepted for publication in the journal, Fishery Bulletin, pending revisions.

Progress During 2nd and 3rd Quarters

- (1) An analysis of hybridization of Chionoecetes species in Alaska utilizing mtDNA markers and a nuclear marker (ITS) was completed. This project utilized DNA markers developed under contract by UW. A total of N=50 of both parental species and N=170 putative hybrids were examined with these markers for this study.
- (2) Microsatellite development under contract with UW Marine Molecular Biotechnology Laboratory has been completed. Primers have been developed and genetic data from all 150 crabs representing three geographic populations (Bristol Bay, Uganik Passage, Deadmans Reach) have been collected from six loci. Analysis of microsatellite data indicate significant heterogeneity among the three populations examined. Technology transfer to ADF&G is being initiated the week of March 24, 1997. One additional population collection (Barlow Cove) will be analyzed during this transfer.
- (3) Allozyme analysis of remaining red king crab samples (N=250) was completed.
- (4) A final report (Jensen and Bentzen 1997) was received on the development and application of microsatellite markers in red king crabs. This work was funded partly (\$7,000) under NOAA Cooperative Agreement NA37FL0333 and partly (\$15,000) with state funds during state fiscal year 1995. A journal manuscript is planned.

Plans for Remainder of Year

- (1) Final revisions of "Genetic variation of highly exploited Tanner crabs, (Chionoecetes bairdi) and snow crabs (C. opilio) in Alaska" are nearly completed by Merkouris and Seeb and will be resubmitted for publication in the journal, Fishery Bulletin.
- (2) A manuscript "A genetic investigation of hybridization between *Chionoecetes bairdi* and *C. opilio*", based on previously collected allozyme data and recently collected mtDNA and nuclear (ITS) data will be completed by Seeb and Merkouris and submitted for inhouse review. Pending review, this manuscript will be submitted for publication in a professional journal. An additional manuscript describing development of mtDNA and nuclear (ITS) DNA *Chionoecetes* species markers will be prepared collaboratively by UW (Jensen, Bentzen) and ADF&G (Merkouris) scientists beginning late in FY 97.
- (3) Transfer of microsatellite technology to ADF&G will continue. An ADF&G pilot study of additional red king crab populations utilizing microsatellite loci will be initiated late in FY 97. A manuscript of the initial pilot study conducted by UW of four population collections will be prepared for submission to a professional journal by Jensen, Bentzen and Seeb. An additional "primer note" paper describing microsatellite primer cloning, including red king crab, will be prepared by Jensen, Bentzen and Seeb beginning late in FY 97.
- (4) Final re-runs and data analysis of red king crab samples are planned for the remainder of the year. Upon completion of red king crab allozyme data analysis, these results will be presented in an ADF&G Regional Information Report by Merkouris and Seeb. This report will include additional previously unpublished red king crab allozyme data.

Benefits of Project

This project addresses questions related to stock structure that were described in the long-term research plan (Kruse 1994, 1996a). Studies of crab genetics may provide bases for revision of fishery management units to better match underlying population structure. For example, appropriate management units for golden king crabs are uncertain. Additionally, results of this project may aid enforcement of crab regulations by helping to provide forensic data for court cases that involve fishing in closed areas.

PROJECT 4: CRAB MANAGEMENT STRATEGIES

Dr. Jie Zheng, Principal Investigator

Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, P.O. Box 25526, Juneau, AK 99802-5526

Background and Need

Sound management requires precise estimates of population abundance and quantitative evaluations of alternative management strategies. In Alaska, many crab stocks are assessed annually by trawl or pot surveys, some are assessed irregularly, and some stocks lack assessments. Population estimation models are needed to make best use of multiple years of data on crab size, sex, and reproductive condition. Such models are necessary to evaluate measurement errors in annual surveys and to generate abundance estimates for stocks that are infrequently assessed.

Estimates of biological production parameters are needed to determine optimal management strategies and to calculate fishery yields for the king and Tanner crab fisheries off the coast of Alaska. For most stocks, the common biological and reference points, such as $F_{0,1}$, yield per recruit, optimum yield, and stock-recruit relationships have not been computed. The utility of fishery thresholds and alternative harvest rates have not been thoroughly evaluated either.

Project Description

This project funds an ADF&G biometrician II to conduct quantitative analyses of abundance, biological, and fisheries data for crab stocks. Analyses focus on information germane to harvest policy: population estimation, optimal thresholds, biological reference points, natural and handling mortality, size limits, stock and recruitment relationships, effects of fishing on growth and reproductive success, sustainable yields, and molting seasonality as related to fishing seasons. Top priority was placed on development of length-based population estimation models that integrate multiple years of survey assessment and catch data, analyses of stock-recruit relationships, and evaluation of the utility of thresholds and harvest rates to optimize the trade-offs between high yield and low variability in yield.

Goals for FY 97

Fourth year work will advance new projects and finalize studies begun in the first three years.

- (1) Update according to reviewer comments the two papers prepared and submitted to professional publications in FY 95 and FY 96 on analysis of harvest strategies and rebuilding strategies for Bristol Bay red king crabs.
- (2) Assist in completion of a manuscript on estimating biological reference points for red king crab stocks in Alaska.
- (3) Continue to investigate the molting probabilities of mature male Tanner crabs in the eastern Bering Sea, focusing on the terminal molt problem. This includes completion of the project and preparation of a manuscript.
- (4) Continue work on optimal harvest strategies for crab populations with periodic recruitment, with an application to the eastern Bering Sea Tanner crab population. This includes preparation of a manuscript.
- (5) Continue to collect data and conduct a catch-length analysis for the Adak red king crab population.
- (6) Construct a catch-survey model for St. Matthew and Pribilof Islands red and blue king crabs.
- (7) Examine stock-recruitment data of forage fish stocks and compare their recruitment patterns. The results may be used to examine crab recruitment patterns.
- (8) Improve the length-based model to deal with correlated error structure of survey data.

Progress During 1st Quarter

The manuscript on optimal harvest strategies for Bristol Bay red king crabs was further revised and has been accepted by the Canadian Journal of Fisheries and Aquatic Sciences for publication. The manuscript on rebuilding strategies for Bristol Bay red king crabs was revised based on reviewers' comments and was submitted to the Journal of Shellfish Research.

The 1996 Bering Sea crab survey data were analyzed, and an ADF&G regional information report on the stock status of Bristol Bay red king crabs in 1996 was prepared and published. Catch-survey models for St. Matthew and Pribilof Islands blue king crabs were constructed, and a manuscript containing the results was drafted. Pribilof

Islands red king crab data were examined, and there are not enough data to conduct a catch-survey analysis at current time.

Stock-recruitment data of forage fish stocks were collected and updated. Also, preliminary computer simulations on optimal harvest strategies for crab populations with periodic recruitment, with an application to the eastern Bering Sea Tanner crab population, were conducted.

Progress During 2nd and 3rd Quarters

The manuscript on rebuilding strategies for Bristol Bay red king crabs was further revised based on reviewers' comments and has been accepted by the Journal of Shellfish Research. Catch-survey analyses for St. Matthew and Pribilof Islands blue king crabs were refined and the manuscript was revised and submitted to the Alaska Fishery Research Bulletin. Examination of stock-recruitment data of forage fish stocks and comparison of their recruitment patterns were completed, and a manuscript was finished and submitted to the Alaska Sea Grant College Program for publication.

Computer simulations were conducted to evaluate minimum size reduction from 6.5 to 6.0 inch carapace width for the Bristol Bay red king crab fishery. A summary of results was written which will be included in a comprehensive, multiply-authored report on effects of size limit reduction that is now being prepared by Kruse.

A great deal of effort has been spent to collect recruitment data for all major Alaskan crab stocks. These data are needed to study crab recruitment patterns in the next fiscal year. Survey, fisheries and tagging data for the Norton Sound red king crab stock were also collected for the study in the next quarter. Further computer simulations on optimal harvest strategies for crab populations with periodic recruitment were conducted.

Plans for Remainder of Year

The following projects will be conducted during the remainder of this year: (1) examination of the effect of correlated error structure of survey data on the length-based model; (2) final revision of the manuscript on catch-survey analyses for St. Matthew and Pribilof Islands blue king crabs once the reviewers' comments are received; and (3) construction of a length-based stock synthesis model for the Norton Sound red king crab stock. Because of a heightened priority to initiate work on the Norton Sound red king crab stock this fiscal year, completion of work on computer simulations on optimal harvest strategies for crab populations with periodic recruitment and estimation of the molting probabilities of mature male Tanner crabs in the eastern Bering Sea will be deferred to next fiscal year.

Benefits of Project

This project relates to the long-term research plan in two ways. First, for all major crab stocks we intend to develop estimates of population abundance by modeling available data. For crab stocks with surveys, the models provide estimates of crab abundance that are relatively insensitive to survey measurement errors in any single year. For crab stocks with only fishery performance data, catch-length models provide abundance estimates which are currently not available. Second, because these models embody critical biological parameters specific to a species and stock, they provide a framework within which to evaluate optimal harvest strategies.

OVERALL RESEARCH PLANNING FOR FY 97

Dr. Gordon H. Kruse, ADF&G Project Coordinator

Alaska Department of Fish & Game, Commercial Fisheries Management and Development Division P.O. Box 25526, Juneau, Alaska 99802-5526

Project progress and future plans were reviewed at the fourth annual interagency crab research meeting during December 18-19, 1996 in Anchorage, Alaska. A report on the minutes of this meeting will be forthcoming. Research was also discussed at the fourth annual crab industry meeting during October 3, 1996 in Kodiak, Alaska. These annual meetings continue to be informative for agency staff and industry alike and stimulate new ideas for promising crab research.

ACKNOWLEDGMENTS

Thanks are extended to Sue Merkouris and Drs. Lisa Seeb, Al Tyler, Jie Zheng, and Shijie Zhou for their contributions to this report, and to Peggy Murphy for reviewing a draft report.

LITERATURE CITED

- Jensen, P.C., and P. Bentzen. 1997. Development and application of microsatellite markers in red king crab, *Paralithodes camtschaticus*. University of Washington, Final Report to Alaska Department of Fish and Game, Unpublished Report, Seattle.
- Carls, M.G., and C.E. O'Clair. 1990. Influence of cold air exposures on ovigerous red king crabs (*Paralithodes camtschaticus*) and Tanner crabs (*Chionoecetes bairdi*) and their offspring. Pages 329-343 in Proceedings of the international symposium on king and Tanner crabs. University of Alaska Fairbanks, Alaska Sea Grant College Program Report 90-04.

- Carls, M.G., and C.E. O'Clair. 1995. Responses of Tanner crabs, *Chionoecetes bairdi*, exposed to cold air. Fishery Bulletin 93:44-56.
- Incze, L.S. 1983. Larval life history of Tanner crabs, *Chionoecetes bairdi* and *C. opilio*, in the southeastern Bering Sea and relationships to regional oceanography. Ph.D. dissertation, University of Washington, Seattle.
- Kruse, G.H. 1993. Application for federal assistance: statement of work for king and Tanner crab research in Alaska. Submitted to National Marine Fisheries Service. Alaska Department of Fish and Game, Division of Commercial Fisheries, Unpublished Report, Juneau.
- Kruse, G. H. 1994. King and Tanner crab research in Alaska: a long-term work plan. Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Regional Information Report 5J94-22, Juneau.
- Kruse, G. H. 1996a. Crab research in Alaska: an interagency long-term plan. Proceedings of the international symposium on biology, management, and economics of crabs from high latitude habitats. Alaska Sea Grant Report, University of Alaska Fairbanks.
- Kruse, G. H., editor. 1996b. King and Tanner crab research in Alaska: first quarter report for July 1, 1996 through September 30, 1996, Commercial Fisheries Management and Development Division, Regional Information Report 5J96-13, Juneau.
- Kruse, G. H., editor. 1997. Semiannual report on king and Tanner crab research: under amendment #3 to cooperative agreement NA37FL0333 during October 1, 1996 through March 31, 1997, Commercial Fisheries Management and Development Division, Regional Information Report 5J97-06, Juneau.
- Murphy, M.C., and G.H. Kruse. 1995. An annotated bibliography of capture and handling effects on crabs and lobsters. Alaska Fishery Research Bulletin 2(1): 23-75.
- Ohtani, K., and T. Azumaya. 1995. Influence of interannual changes in ocean conditions on the abundance of walleye pollock (*Theragra chalcogramma*) in the eastern Bering Sea. Pages 87-95 in R.J. Beamish, editor. Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Sciences 121.
- Seeb, J.E., G.H. Kruse, L.W. Seeb, and R.G. Weck. 1990a. Genetic structure of red king crab populations in Alaska facilitates enforcement of fishing regulations. Pages 491-502 in Proceedings of the International Symposium on king and Tanner crabs. Alaska Sea Grant College Program Report 90-04, University of Alaska, Fairbanks.

- Seeb, L.W., J.E. Seeb, and G.H. Kruse. 1990b. Genetic studies track the red king crab in Alaskan waters. Alaska's Wildlife 22(6): 11-13.
- Stevens, B.G., J.A. Haaga and R.A. MacIntosh. 1996. Report to the industry on the 1995 Eastern Bering Sea crab survey. National Marine Fisheries Service, Alaska Fisheries Science Center Processed Report 96-01, Seattle, WA.
- Tyler. A.V. 1992. A context for recruitment correlations: why fisheries biologists should still look for them. Fisheries Oceanography 1:97-107.
- Zheng, J., M.C. Murphy and G.H. Kruse. In press. A length-based approach to estimate population abundance of Tanner Crab, *Chionoecetes bairdi*, in Bristol Bay, Alaska. Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management. Canadian Special Publication of Fisheries and Aquatic Sciences 125.
- Zhou, S., and T.C. Shirley. 1995. Effects of handling on feeding, activity and survival of red king crabs, *Paralithodes camtschaticus* (Tilesius, 1815). Journal of Shellfish Research 14: 173-177.
- Zhou, S., and T.C. Shirley. 1996. Is handling responsible for the decline of the red king crab fishery? Pages 591-611 *in* High latitude crabs: biology, management, and economics. Alaska Sea Grant College Program Report 96-02, University of Alaska Fairbanks.

The Alaska Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood, or disability. For information on alternative formats available for this and other department publications, contact the department ADA Coordinator at (voice) 907-465-4120, or (TDD) 907-465-3646. Any person who believes s/he has been discriminated against should write to: ADF&G, PO Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.